
An Introduction to the Lua Programming
Language

Davis Claiborne

NCSU LUG

February 10, 2018

1

What is Lua?

Open source scripting language developed in Brazil

Primarily known for

• Speed (for an interpreted language)

• Simplicity

• Embedability

• Portability

2

Where is Lua used?

Lua can be found embedded in many different areas:

• Web

• MediaWiki templates [1]

• Internet servers such as Apache [2] and NGINX [3]

• Moonshine is a Lua VM for browsers [4]

• Software

• VLC for custom scripting [5]

• LuaTeX is an extended version of TeX [6]

• Network diagnostic tools, including Nmap [7] and Wireshark [8]

• Torch machine learning uses Lua [9]

• Games

• Many games, such as World of Warcraft [10], Roblox [11], and
more all allow creating plugins using Lua

• Number 1 most used langauge in game dev [12]

• And many more... [13]

3

How Fast is Lua?

Lua is one of the fastest interpreted languages around [14]

A few notes on this test:

• It only uses one test application, so it’s not an ideal showcase

• Test is comparing embeded implementations of languages

Lua can be made even faster with LuaJIT [15]

• LuaJIT is at least two times faster, can be >64x for some
tests

• Exposes FFI for even greater performance increases

4

What Does Lua’s Syntax Look Like?

Lua’s syntax is pretty simple and very similar to JavaScript. This is
not an all-inclusive list; just a quick run-down.

-- Two dashes represent single-line comments

-- Lua is dynamically-typed and duck-typed, so declaring

-- a variable involves no types

languageName = 'lua'

avagadrosNumber = 2.2e23

boolean = true

--[[

Blocks comments are done with two square brackets, with

an optional number of `=' in between, allowing for

nesting of block comments.

]]

5

--[=[There are 5 main types in Lua:

* boolean

* number

* string

* function

* table

(Lua actually has 8 types; I'm ignoring the rest for now)

]=]

-- Using and declaring functions is simple

function foo(x)

print(x)

end

foo("test") -- Outputs "test" to stdout

6

How Embeddable is Lua?

Lua can be used on microcontrollers with eLua [16]

Lua is very easy to embed in other languages, including: [12]

• C

• C++

• Java

• Fortran

• Ada

• ...

Lua is a good choice for many applications due to its small size,
speed, small memory footprint, etc. [17]

It is possible to embed Lua without the compiler to save memory [18]

7

How Portable is Lua?

Lua is written entirely in ANSI C [19]

High emphasis on being low-profile:

From Programming in Lua: [20]

“Unlike several other scripting languages, Lua does not use POSIX
regular expressions (regexp) for pattern matching. The main
reason for this is size: A typical implementation of POSIX regexp
takes more than 4,000 lines of code. This is bigger than all Lua
standard libraries together.”

From Luiz Henrique de Figueiredo, Lua Team member: [16]

“Very early on in the development of Lua we started using the
question ‘But will it work in a microwave oven?’ as a
half-serious test for including features while avoiding bloat.”

The entire size of the Lua interpreter and base libraries can fit in
well under 1 MB [18]

8

Notable Aspects of Lua: Coroutines

Coroutines allow for intuitive async code

-- Non-async code

function foo()

print("first")

-- How to suspend execution until later?

print("third")

end

function bar()

print("second")

print("fourth")

end

foo() -- "first", "third"

bar() -- "second", "fourth"

Is there any way to get these functions to pause and resume easily?

9

Coroutines create separate threads for each function, allowing for
easy and intuitive async events

function foo()

print("first")

coroutine.yield() -- Suspends thread until resumed

print("third")

end

function bar()

print("second")

coroutine.yield()

print("fourth")

end

co1 = coroutine.create(foo)

co2 = coroutine.create(bar)

coroutine.resume(co1) -- "first"

coroutine.resume(co2) -- "second"

coroutine.resume(co1) -- "third"

coroutine.resume(co2) -- "fourth"

10

Notable Aspects of Lua: Global by Default

Lua features variables that are global by default1, and block-local

function foo()

local bar = 'this is local'

baz = 'this is global'

print(bar) -- "this is local"

print(baz) -- "this is global"

end

foo()

print(bar) -- "nil"

print(baz) -- "this is global"

Undefined variables do not cause errors; instead they return “nil”2

Local values are preferable for performance and complexity reasons

1This can be protected against; implementation will follow here
2This is considered by most to be one of the major flaws of Lua

11

Notable Aspects of Lua: Tables

Tables are the only memory container format in Lua

my_table = {

string = 'asdf', -- Named keys

1, -- Non-named keys are automatically integers

3,

5,

}

print(my_table.string) -- "asdf"

print(my_table['string']) -- also "asdf" (both ways work)

print(my_table[1]) -- "1" (Note: tables start at 1 in Lua)

print(my_table[2]) -- "3"

print(my_table[3]) -- "5"

print(my_table.1) -- Syntax error; not a string key

12

Notable Aspects of Lua: Tables

Almost anything in Lua can act as a table key, even other tables

function foo()

end

other_table = {

[foo] = "function foo",

["1"] = "string 1", -- Different than numeric 1

foo, -- Integer that references a function

[true] = "true value",

[my_table] = "my_table is the key",

}

print(other_table.foo) -- "nil"

print(other_table[foo]) -- "function foo"

print(other_table['1']) -- "string 1"

print(other_table[1]) -- "function: 0x......."

print(other_table[true]) -- "true value"

print(other_table[my_table]) -- "my_table is the key"

13

Notable Aspects of Lua: Tables

Tables can even be cyclic

cyclic1 = {}

cyclic2 = {}

cyclic1[1] = cyclic2

cyclic2[1] = cyclic1

print(cyclic1, cyclic2) -- table: a, table: b

print(cyclic2[1], cyclic1[1]) -- table: a, table: b

print(cyclic1[1][1], cyclic2[1][1]) -- table: a, table: b

14

Notable Aspects of Lua: Global Variable Table

All global variables are stored in a special table, “ G”

globalVariable = 'adsf'

print(_G.globalVariable) -- 'asdf'

This table contains not only all global variables, but also all
base-library functions, such as print.

Using a table to store global variables allows for powerful
customizability through metamethods

15

Notable Aspects of Lua: Metamethods

Metamethods are special functions, in tables called metatables,
that allow customization of tables

These allow for OOP-like behavior and more

Metamethods exist for:

• Addition

• Subtraction

• Multiplication

• Concatenation

• and more...

Metamethods can also be used for sandboxing

Live demo

16

point = {}

function point.new(x, y)

return setmetatable({ x = x or 0, y = y or 0 }, point)

end

-- Invoked when addition occurs

function point.__add(a, b)

return point.new(a.x + b.x, a.y + b.y)

end

-- Invoked when table is called like a function

function point:__call(x, y)

return point.new(x, y)

end

-- Applies metamethods; nothing special about table before this

-- A table can have any table as its metatable, even itself

setmetatable(point, point)

17

pointA = point()

pointB = point(3, 3)

print(pointA) -- table: 0x......

-- Invoked when table is concatted

function point:__tostring()

-- Note implicit self (: vs . in function name)

-- Is the same as point.__tostring(self, ...)

return "(" .. tonumber(self.x) .. ", "

.. tonumber(self.y) .. ")"

end

print(pointA) -- "(0, 0)"

print(point.__tostring(pointA)) -- "(0, 0)"

print(pointB) -- "(3, 3)"

pointC = pointA + pointB

print(pointC) -- "(3, 3)"

pointD = point(-3, 4)

pointE = pointC + pointD

print(pointE) -- "(0, 7)"
18

Using Metamethods to Prevent Accidental Globals
declaredGlobals = {}

function declare(name)

declaredGlobals[name] = true

end

setmetatable(_G, {

-- Called every time a new key is added to a table

__newindex = function(tab, key, value)

assert(declaredGlobals[key],

"Error: value not declared"

)

-- Directly set the value

-- (assigning would cause infinite loop)

rawset(tab, key, value)

end,

})

foo = 3 -- Error: value not declared...

declare('foo')

foo = 3

19

Notable Aspects of Lua: Proper Tail calls

Proper tail calls are good for recursive algorithms

Stack-overflow cannot occur due to a proper tail call

A tail call is defined as “when a function [only] calls another
[function] as its last action.”[21]

Live demo

20

-- Improper tail call, as it's multiplying; not "just" tail call

function factorial(n)

if n == 0 then

return 1

else

return n * fact(n - 1)

end

end

factorial(-1) -- Stack overflow

-- Proper tail call implementation of factorial

function factorial(n, prod)

prod = prod or 1

if n == 0 then

return prod

else

return factorial(n - 1, n * prod)

end

end

factorial(-1) -- Infinite loop
21

Notable Aspects of Lua: First-class functions

Functions are first-class values

This basically means that functions can be used as arguments,
return values, etc. Essentially, functions can be treated just like
any variable.

Consider the following example:

family = { "mom", "father", "sister", "son" }

-- Note the "anonymous" function as a parameter

table.sort(family, function(string1, string2)

return #string1 < #string2 -- # means "the length of"

end)

for i = 1, #family do

print(family[i])

end

-- "mom", "son", "sister", "father"

22

Notable Aspects of Lua: Closures and Lexical
Scoping

A closure is a type of function with full access to its calling
environment. This environment is called its lexical scope.

function sortNames(names)

table.sort(names, function(string1, string2)

return #string1 < #string2 -- (# is "length of")

end)

end

family = { "mom", "father", "sister", "son" }

sortNames(family)

for i = 1, #family do

print(family[i])

end

-- "mom", "son", "father", "sister"

What type of value is names inside of the anonymous sorting
function? Is it local or global?

23

Notable Aspects of Lua: Upvalues

Trick question! It’s an “external local variable” or “upvalue”[22]

Upvalues can be used with great effect, along with functions, to
produce unique behaviors

function newCounter()

local i = 0

return function()

i = i + 1

return i

end

end

c1 = newCounter()

print(c1()) -- "1"

print(c1()) -- "2"

c2 = newCounter()

print(c2()) -- "1"

print(c1()) -- "3"

24

Implementations and Tools for Lua

Standard Lua: Currently in version 5.3 [12]; first widespread use of
register-based virtual machine [18]

LuaJIT: JIT-based implementation; hybrid of Lua 5.1 and 5.2 [15]

LuaRocks: The most popular package manager for Lua [24]

Moonscript: More symbolic language that compiles to Lua [25]

LuaCheck: Code linter; can check for accidental globals [26]

SciLua: Collection of libraries intended for researchers [27]

Julia: Language with nearly identical Lua syntax; inteded for
scientific use. Features parallel execuetion, arbitrary accuarcy, and
more [28]

25

LuaRocks

LuaRocks is the most popular package manager for Lua.

Includes pure-Lua libraries as well as C bindings.

Contains over 2K modules

26

Moonscript

Moonscript features a number of differences from Lua [25]

Differences:

• Variables local by default

• Significant whitespace

• Built-in OOP

Moonscript:

-- Moonscript features implicit returns

sum = (x, y) -> print "sum", x + y

Equivalent Lua:

function sum(x, y)

print("sum")

return x + y

end

27

This code in Moonscript

-- Moonscript

evens = [i for i=1,100 when i % 2 == 0]

Gets compiled to this

-- Lua

local evens

do

local _accum_0 = { }

local _len_0 = 1

for i = 1, 100 do

if i % 2 == 0 then

_accum_0[_len_0] = i

_len_0 = _len_0 + 1

end

end

evens = _accum_0

end

28

SciLua

Seeks to bridge the gap between the use of high-performance
languages and scripting languages in the scientific community

Combines several libraries for scientific and statistical use

Figure: Relative speed comparison of C, Julia, and SciLua (LuaJIT) [27]

29

Julia

Julia new language primarily for machine learning

Combines aspects of Python, Lua, and C and Fortran

Example: [29]

"Map" function.

Takes a string. Returns a Dict with the number of times each

word appears in that string.

function wordcount(t)

words=split(t,[' ','\n','\t','-','.',',',':',';'];keep=false)

counts=Dict()

for w = words

counts[w]=get(counts,w,0)+1

end

return counts

end

30

References I

[1] Why ”Lua” is on everybody’s lips, and when to expect MediaWiki 1.19
https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_Signpost/2012-01-30/Technology_report

[2] Apache HTTP Server https://httpd.apache.org/docs/trunk/mod/mod_lua.html

[3] NGINX (OpenResty) https://openresty.org/

[4] Moonshine http://www.moonshinejs.org/

[5] Extending VLC with Lua http://www.coderholic.com/extending-vlc-with-lua/

[6] LuaTeX http://luatex.org/

[7] Nmap https://nmap.org/book/nse-language.html

[8] Wireshark https://wiki.wireshark.org/Lua

[9] Torch http://torch.ch/

[10] World of Warcraft Scripting http://www.wowwiki.com/Lua

[11] Roblox Scripting http://wiki.roblox.com/?title=Scripting

[12] Why choose Lua? https://www.lua.org/about.html#why

[13] Where is Lua Used https://sites.google.com/site/marbux/home/where-lua-is-used

[14] Game Scripting Languages Benchmarked https://github.com/r-lyeh-archived/scriptorium

[15] LuaJIT https://luajit.org/

31

https://en.wikipedia.org/wiki/Wikipedia:Wikipedia_Signpost/2012-01-30/Technology_report
https://httpd.apache.org/docs/trunk/mod/mod_lua.html
https://openresty.org/
http://www.moonshinejs.org/
http://www.coderholic.com/extending-vlc-with-lua/
http://luatex.org/
https://nmap.org/book/nse-language.html
https://wiki.wireshark.org/Lua
http://torch.ch/
http://www.wowwiki.com/Lua
http://wiki.roblox.com/?title=Scripting
https://www.lua.org/about.html#why
https://sites.google.com/site/marbux/home/where-lua-is-used
https://github.com/r-lyeh-archived/scriptorium
https://luajit.org/

References II

[16] eLua http://www.eluaproject.net/

[17] Lua on Cell Phones http://lua-users.org/lists/lua-l/2007-11/msg00248.html

[18] The Implementation of Lua 5.0 https://www.lua.org/doc/jucs05.pdf

[19] Lua 5.1 Reference Manual https://www.lua.org/manual/5.1/manual.html

[20] Why Lua doesn’t implement POSIX RegEx https://www.lua.org/pil/20.1.html

[21] Proper Tail Calls https://www.lua.org/pil/6.3.html

[22] Upvalues https://www.lua.org/pil/6.1.html

[23] The Implementation of Lua 5.0 https://www.lua.org/doc/jucs05.pdf

[24] LuaRocks https://luarocks.org/

[25] Moonscript https://moonscript.org/

[26] LuaCheck https://github.com/mpeterv/luacheck

[27] SciLua http://scilua.org/

[28] Julia https://julialang.org/

[29] Wordcount Julia Example https://github.com/JuliaLang/julia/blob/master/examples/wordcount.jl

32

http://www.eluaproject.net/
http://lua-users.org/lists/lua-l/2007-11/msg00248.html
https://www.lua.org/doc/jucs05.pdf
https://www.lua.org/manual/5.1/manual.html
https://www.lua.org/pil/20.1.html
https://www.lua.org/pil/6.3.html
https://www.lua.org/pil/6.1.html
https://www.lua.org/doc/jucs05.pdf
https://luarocks.org/
https://moonscript.org/
https://github.com/mpeterv/luacheck
http://scilua.org/
https://julialang.org/
https://github.com/JuliaLang/julia/blob/master/examples/wordcount.jl

The End

33

