
How GCC Compiles Code
A look at how GCC does some of its magic

Davis Claiborne

LUG @ NC State

September 4, 2019

Overview
Preprocessing

Compilation

Justification
Compilation flow

What is a compiler and why do you need it?

Compiler: Coverts code to format computer can interpret natively

Justification: Simpler code; portability

Program: GCC - common; widely available; system support

Davis Claiborne Compiligng C Code 1 / 14

What is a compiler and why do you need it?

Compiler: Coverts code to format computer can interpret natively

Justification: Simpler code; portability

Program: GCC - common; widely available; system support

20
19

-1
0-

02
Compiligng C Code

Overview
Justification

What is a compiler and why do you need it?

• A compiler is a tool that is used to translate a programming
language, such as C, to a machine language that can be directly
interpreted by the processor

• Justification: Why would you want to use a compiler?
– If you’ve never written in assembly or machine code, try

writing any somewhat complex program with it and that’s all
the justification you need - it is very complicated and tedious

– Additionally, code can be compiled to virtually any platform or
processor, instead of having to write different assembly for
every target

• Program: We will be looking at GCC, the GNU Compiler Collection,
as it is essentially the de-facto compiler for the most common
platforms, and is widely available and free to use

Overview
Preprocessing

Compilation

Justification
Compilation flow

Steps of compilation process

Preprocessing Compilation

Assembly Linking

gcc -o program

program.c

[1]

Davis Claiborne Compiligng C Code 2 / 14

Steps of compilation process

Preprocessing Compilation

Assembly Linking

gcc -o program

program.c

[1]20
19

-1
0-

02
Compiligng C Code

Overview
Compilation flow

Steps of compilation process

• The preprocessing stage is responsible for handling C macros,
#defines, #includes, and other C preprocessors

• The compilation stage converts the preprocessed code to an
intermediate representation, known as an AST, or abstract syntax
tree, and performs optimizations using it

• The assembly stage converts the AST to an object file, which
typically contains assembly code

• The linking stage essentially adds functions from external files and
rearranges the assembly code so that functions are declared before
they are used

• In this presentation, I will cover the first two stages.

Overview
Preprocessing

Compilation

Overview
Initial processing
Tokenization
The preprocessing language

Steps of preprocessing process

Preprocessing
Initial processing

Tokenization

Header filesMacros Conditionals

Compilation

Preprocessing directives

[3]

Davis Claiborne Compiligng C Code 3 / 14

Steps of preprocessing process

Preprocessing
Initial processing

Tokenization

Header filesMacros Conditionals

Compilation

Preprocessing directives

[3]

20
19

-1
0-

02
Compiligng C Code

Preprocessing
Overview

Steps of preprocessing process

• The first step of the preprocessor is known as initial processing, which
takes care of text encoding as well as several other basic tasks

• The next step is tokenization, which is where the compiler begins to split
the raw text of the source file into discrete sections which can be
operated on by preprocessor directives

• Macros, which are specified by #define calls, can be one of two things:
plain text replacements, or function-like

• Header files are handled by #include - this preprocessor essentially just
prepends the header mentioned to top of the file

• Conditionals are used to specify parts of code that may or may not be
included in the compilation process by using #ifdef or #if, which will
evaluate an expression, then include the code if that condition is true

• One thing to understand about the preprocessing step of compilation is
that none of these steps are particularly syntax aware - they just do
simple text replacement and operations

Overview
Preprocessing

Compilation

Overview
Initial processing
Tokenization
The preprocessing language

Initial processing

Initial processing

Text conversion

Trigraph re-
placement1

Merge con-
tinued lines

Comments
are removed

[3, sections 1.1 and 1.2]

1The following trigraphs are defined:

Trigraph ??(??) ??< ??> ??= ??/ ??' ??! ??-

Replacement [] { } # \ ̂ | ̃

Davis Claiborne Compiligng C Code 4 / 14

Initial processing

Initial processing

Text conversion

Trigraph re-
placement1

Merge con-
tinued lines

Comments
are removed

[3, sections 1.1 and 1.2]

1The following trigraphs are defined:

Trigraph ??(??) ??< ??> ??= ??/ ??' ??! ??-

Replacement [] { } # \ ̂ | ̃

20
19

-1
0-

02
Compiligng C Code

Preprocessing
Initial processing

Initial processing

• During the text conversion portion of initial processing, the
compiler attempts to convert the provided C file into UTF-8

• The compiler also takes care of trigraphs, which are three character
sequences, starting with two question marks, that represent specific
characters that are used in C but were not present on some very old
computers

– GCC actually ignores trigraphs by default since they are not
widely supported by most compilers and can get you into
trouble if you’re not careful, but you can enable them with the
-std or -trigraph options if desired

• Additionally, lines ending with a backslash are merged with the line
following it

– Technically speaking, lines can be continued anywhere, not
just at white space, since no space is added

• Finally, all comments are removed and replaced with a single space

Overview
Preprocessing

Compilation

Overview
Initial processing
Tokenization
The preprocessing language

Tokenization

Two main parts to tokenization:
• Grouping
• Digraph replacement

Digraphs are similar to trigraphs, but are safer and do less

Digraph <% >% <: :> %: %:%:

Replacement]] { } # ##

Why digraphs are safer than trigraphs:

// Will this work???/

do_magic_please() becomes
// Will this work?\

do_magic_please()

If using trigraph replacement
[3, sections 1.3]

Davis Claiborne Compiligng C Code 5 / 14

Tokenization

Two main parts to tokenization:
• Grouping
• Digraph replacement

Digraphs are similar to trigraphs, but are safer and do less

Digraph <% >% <: :> %: %:%:

Replacement]] { } # ##

Why digraphs are safer than trigraphs:

// Will this work???/

do_magic_please() becomes
// Will this work?\

do_magic_please()

If using trigraph replacement
[3, sections 1.3]

20
19

-1
0-

02
Compiligng C Code

Preprocessing
Tokenization

Tokenization

• Tokenization, also known as lexical analysis, is a step of the compilation
process where the text from the program is split up into various groupings.

• These groupings allow the compiler to be somewhat syntax aware, as the
compiler groups the tokens into five broad categories: item identifiers,
preprocessing numbers, string literals, punctuators, and other

• These groupings allow the compiler to treat different types differently -
for instance, macro replacement does not occur within strings

• In the case of ambiguities, the tokenizer is greedy, meaning that it will try
to match as much as possible first - this can sometimes result in syntax
errors or undesired code

• Additionally, digraph conversion occurs during tokeniztion

– Although digraphs accomplish less than trigraphs, they are
safer to use than trigraphs: since conversion happens during
tokenization, character grouping has already occurred, so lines
can’t accidentally get commented out like you see here

Overview
Preprocessing

Compilation

Overview
Initial processing
Tokenization
The preprocessing language

Examples of tokenization

#define MACRO 5

int a = 0;

int b = MACRO;

int c = a + b;

char d = 'd';

int a = 0 ;

int a = 5 ;

int c = a + b ;

char d = ’d’ ;

gcc -E -fdebug-cpp

Identifier
Punctuator
Preprocessing number
String literal

Davis Claiborne Compiligng C Code 6 / 14

Examples of tokenization

#define MACRO 5

int a = 0;

int b = MACRO;

int c = a + b;

char d = 'd';

int a = 0 ;

int a = 5 ;

int c = a + b ;

char d = ’d’ ;

gcc -E -fdebug-cpp

Identifier
Punctuator
Preprocessing number
String literal20

19
-1

0-
02

Compiligng C Code
Preprocessing

Tokenization
Examples of tokenization

• Here you can see a simple example of how a program was tokenized

• As you can see, C keywords are not special to the tokenizer

– This is because C keywords can be used as macros, which can
be useful - for instance, you could #define const to remove
const from your code if using an older compiler that doesn’t
support it

– The only exception to this rule is the defined preprocessor
operator, in which case the compiler will throw an error during
the preprocessing phase if used in a macro

• Astute observers may notice that the “other” grouping is not visible -
only @, $, `, and control characters other than null fall into this category

• Null is treated as white space and warned about
• If you’re curious how your code has been tokenized, you can use the

-fdebug-cpp flag to see where the text has been broken up

Overview
Preprocessing

Compilation

Overview
Initial processing
Tokenization
The preprocessing language

The preprocessing language

Jobs of the preprocessing language:
• Header files

• #include <file.h>

• #include "file.h"

• Macro expansion
• #define TEXT val

• #define FUNC(args) body

• Conditionals (#if, #ifdef, etc.)
• Other less commonly used directives

[3]

Davis Claiborne Compiligng C Code 7 / 14

The preprocessing language

Jobs of the preprocessing language:
• Header files

• #include <file.h>

• #include "file.h"

• Macro expansion
• #define TEXT val

• #define FUNC(args) body

• Conditionals (#if, #ifdef, etc.)
• Other less commonly used directives

[3]20
19

-1
0-

02
Compiligng C Code

Preprocessing
The preprocessing language

The preprocessing language

• Before the compilation stage can happen, translation must occur

• One of the most simple preprocessor instructions is the #include

command, which takes a single argument, the header file to include
– The use of angled brackets indicates that the specified file is a

system file, specified directories are searched through for it
– Quotes indicate that the file is a user-defined file, so the

preprocessor first looks for the specified file in the current
directory, then in the specified “quote” directories, then finally
in the same directories as it looks for system files

Overview
Preprocessing

Compilation

Overview
Initial processing
Tokenization
The preprocessing language

The preprocessing language

Jobs of the preprocessing language:
• Header files

• #include <file.h>

• #include "file.h"

• Macro expansion
• #define TEXT val

• #define FUNC(args) body

• Conditionals (#if, #ifdef, etc.)
• Other less commonly used directives

[3]

Davis Claiborne Compiligng C Code 7 / 14

The preprocessing language

Jobs of the preprocessing language:
• Header files

• #include <file.h>

• #include "file.h"

• Macro expansion
• #define TEXT val

• #define FUNC(args) body

• Conditionals (#if, #ifdef, etc.)
• Other less commonly used directives

[3]20
19

-1
0-

02
Compiligng C Code

Preprocessing
The preprocessing language

The preprocessing language

• Another task is macro expansion, which takes two forms:
– The first variation acts essentially like a find and replace that

the preprocessor performs
– The second variation is a bit more complex, as it has the

ability to take “parameters”

• Conditionals are the last commonly-used directive - these can
evaluate statements containing expressions composed solely of
macros - since, remember, the preprocessor has no real knowledge
of C’s syntax, so it can’t evaluate variables, even constants

• There are other less common directives, such as warning, error,
etc., though they are rarely used in most applications

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

Steps of compilation process

Compilation

Convert to IR / ILPerform op-
timizations

Convert to AST

Assembly

Preprocessing

[4] [6]

Davis Claiborne Compiligng C Code 8 / 14

Steps of compilation process

Compilation

Convert to IR / ILPerform op-
timizations

Convert to AST

Assembly

Preprocessing

[4] [6]20
19

-1
0-

02
Compiligng C Code

Compilation
Overview

Steps of compilation process

• After the processing phase, the compiler moves on to compilation

• During compilation, the preprocessed tokens are parsed in order to
be converted into an AST

• The AST, or abstract syntax tree, is used to check for syntax errors
in the code, as well as generate the list of variables used in the
program

• The AST is then used to generate an IR, or intermediate
representation, also known as an IL, or intermediate language

– While technically speaking, the AST is a type of IR, the
distinction is made here to distinguish between the two phases
of syntax checking and optimization

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

Steps of compilation process

Compilation

Convert to IR / ILPerform op-
timizations

Convert to AST

Assembly

Preprocessing

[4] [6]

Davis Claiborne Compiligng C Code 8 / 14

Steps of compilation process

Compilation

Convert to IR / ILPerform op-
timizations

Convert to AST

Assembly

Preprocessing

[4] [6]20
19

-1
0-

02
Compiligng C Code

Compilation
Overview

Steps of compilation process

• You may be wondering, what is an IR and why is it used?
– IRs are essentially special languages that the compiler uses

when generating code
– They’re used for two main reasons:

• They are specifically designed so that the code can more easily
be operated on, i.e. analyzed for optimizations, syntax errors,
variables, etc.

• So that platform-specific optimizations only have to be
written once, based on the IR, instead of having to be written
for each supported language

• As you can see, the code may be converted to an IR several times,
as different IRs are better suited for different optimizations

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

Generating the AST

Compilation

Convert to AST

Preprocessing

Get tokens

Parse tokens
into AST

Determine
variable scopes

Check syntax

Convert to IR / IL

[10]

Davis Claiborne Compiligng C Code 9 / 14

Generating the AST

Compilation

Convert to AST

Preprocessing

Get tokens

Parse tokens
into AST

Determine
variable scopes

Check syntax

Convert to IR / IL

[10]

20
19

-1
0-

02
Compiligng C Code

Compilation
AST

Generating the AST

• The ordered, loosely-typed tokens generated during the
preprocessing stage and arranged into an AST

• Next, each variable’s scope is determined
– The scope of each variable is required for later optimizations,

as well to ensure that variables are defined in-scope

• Finally, the AST is analyzed in order to ensure syntax is correct
– Correct number of arguments given to functions
– Variable types are correct
– Lvalues and rvalues are all valid
– All variables are accessible from current scope

• Assuming there are no syntax errors, the AST is then converted to
an IR for optimization

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

Some comments on the AST

Obj C Fortran 95 Java C++ C

Obj C
genericizer

Fortran 95
genericizer

Java
genericizer

C++
genericizer

C
genericizer

GENERIC

Further op-
timizations

[2, section 11] [7] [8]

Davis Claiborne Compiligng C Code 10 / 14

Some comments on the AST

Obj C Fortran 95 Java C++ C

Obj C
genericizer

Fortran 95
genericizer

Java
genericizer

C++
genericizer

C
genericizer

GENERIC

Further op-
timizations

[2, section 11] [7] [8]

20
19

-1
0-

02
Compiligng C Code

Compilation
AST

Some comments on the AST

• The AST that gcc uses is intended to be language independent - it
must be general enough such that any language being compiled can
be represented by it

• With that in mind, the AST is fittingly called “GENERIC”

• Remember how each IR best suites a specific optimization? The
way GENERIC represent code is best suited for “name space
abstraction” of variables.

• Name space abstraction is the name given to how the compiler
deals with the scope of variables - the scope and use of each
variable influences how the compiler makes use of registers later on

• Technically speaking, no optimization actually goes on here for C
code, since for C it is actually less efficient to optimize here, but it
is still used as an intermediate step for generating the next IR

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

AST Visualization

#define M 5

int a = 0;

int b = M;

int c = 0;

while

(a++ + M < 'a') {

c = c + b+++a;

}

[4]

while

<

+

a 5

97

++

a

=

c +

c +

++

b

a

condition
evaluate

conditional body

Davis Claiborne Compiligng C Code 11 / 14

AST Visualization

#define M 5

int a = 0;

int b = M;

int c = 0;

while

(a++ + M < 'a') {

c = c + b+++a;

}

[4]

while

<

+

a 5

97

++

a

=

c +

c +

++

b

a

condition
evaluate

conditional body
20

19
-1

0-
02

Compiligng C Code
Compilation

AST
AST Visualization

• Here you can see an example of what a line would look like after
having its tokens parsed and arranged into an AST

• You may have noticed there was some ambiguity in how the code
could have been interpreted - b+++a could become b++ + a or b +

++a

• Because the tokenizer is greedy, the shown interpretation is correct

• There are many ways to parse the tokens and reach such an AST -
one of the most common and easy to understand is through using
Dijkstra’s “shunting-yard” algorithm

• This algorithm includes most aspects of constructing the AST,
including operator precedence and associativity

– Associativity refers to how to determine order of operations for
operators with equal precedence

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

GENERIC goes to GIMPLE

GIMPLE: Simpler, restricted GENERIC

while (b < 0) {

c = b++ / a + b * a;

}

→

goto <D.1197>;

<D.1196>:;

T2 = b / a; // Loop body

T3 = b * a;

c = T2 + T3;

b = b + 1;

<D.1197>:;

if (b < 0) goto <D.1196>;

else goto <D.1198>;

<D.1198>:;

GENERIC GIMPLE
“Gimplification”

[5]; example modified from [8]

Davis Claiborne Compiligng C Code 12 / 14

GENERIC goes to GIMPLE

GIMPLE: Simpler, restricted GENERIC

while (b < 0) {

c = b++ / a + b * a;

}

→

goto <D.1197>;

<D.1196>:;

T2 = b / a; // Loop body

T3 = b * a;

c = T2 + T3;

b = b + 1;

<D.1197>:;

if (b < 0) goto <D.1196>;

else goto <D.1198>;

<D.1198>:;

GENERIC GIMPLE
“Gimplification”

[5]; example modified from [8]

20
19

-1
0-

02
Compiligng C Code

Compilation
IR / optimization

GENERIC goes to GIMPLE

• The next step in compilation is converting the AST, represented with
GENERIC, to the next IR, which is known as GIMPLE

• GIMPLE is a subset of GENERIC with one important distinction - all
commands are “three address” commands, meaning that each GIMPLE
command is guaranteed to reference three or fewer memory locations

• Additionally, some control flow structures, such as while-loops, are
converted to more primitive structures

• The process of converting to GIMPLE is known as “gimplification.”
• The reason that this is done is because it more closely resembles the

operations that the machine code will be doing. Using a generic machine
code-like language makes performing optimizations simpler and easier to
do.

• The T2 and T3 seen in the above GIMPLE code are referred to as
“expression temporaries” and are used to attempt to eliminate redundant
calculations

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

Optimizing GIMPLE - Step 1: Control flow

#define DEBUG 0

int a = 0,

c = 1;

if (DEBUG) {

printf("debug");

}

c = foo(a);

if (c) {

a = 32;

}

if (c) {

c = 34;

}

int a = 0, c = 1;

c = 1 is dead code

if (0) printf("debug");

Dead code

c = foo(a);

if (c) a = 32;

if (c) c = 34;

This if statement can be merged with previous

[2, section 15] [8] [9]

Davis Claiborne Compiligng C Code 13 / 14

Optimizing GIMPLE - Step 1: Control flow

#define DEBUG 0

int a = 0,

c = 1;

if (DEBUG) {

printf("debug");

}

c = foo(a);

if (c) {

a = 32;

}

if (c) {

c = 34;

}

int a = 0, c = 1;

c = 1 is dead code

if (0) printf("debug");

Dead code

c = foo(a);

if (c) a = 32;

if (c) c = 34;

This if statement can be merged with previous

[2, section 15] [8] [9]

20
19

-1
0-

02
Compiligng C Code

Compilation
IR / optimization

Optimizing GIMPLE - Step 1: Control flow

• The first step to optimizing GIMPLE code is to construct a control
flow graph

• By constructing a control flow graph, it is easier to detect “dead”
code that is never executed or is never used

• Additionally, the compiler can perform several test runs of the
function to get usage information about the function, such as how
many times each block was run, as well as how frequently a block of
code was run relative to the rest of the blocks

– This information can be used to guide decisions that the
compiler makes regarding optimizing speed over space - for
instance, if a block of code is run very many times, it is
probably more important to optimize its speed

• For example, here you can c = 1 is considered dead - this is
because, assuming it’s not used in foo, it is automatically
overwritten by the value returned by foo.

Overview
Preprocessing

Compilation

Overview
AST
IR / optimization

Optimizing GIMPLE - Step 2: SSA

C Code

c = 3;

c++;

c = 5;

GIMPLE code - post-cfg

c_1 = 3;

c_2 = c_1 + 1;

c_3 = 5;

Davis Claiborne Compiligng C Code 14 / 14

Optimizing GIMPLE - Step 2: SSA

C Code

c = 3;

c++;

c = 5;

GIMPLE code - post-cfg

c_1 = 3;

c_2 = c_1 + 1;

c_3 = 5;

20
19

-1
0-

02
Compiligng C Code

Compilation
IR / optimization

Optimizing GIMPLE - Step 2: SSA

• You may be wondering, “How can does the control flow graph
identify dead code?”

• The main way is through SSA, or “Single Static Analysis”

• The GIMPLE code is changed so that each variable only has one
assignment - if a variable has multiple assignments, it is indicated
using an underscore

• The compiler then analyzes each variable assignment to determine if
it is necessary or not

References I

General:
[1] The Four Stages of Compiling a C Program

https://www.calleerlandsson.com/the-four-stages-of-compiling-a-c-program/

[2] GNU Compiler Collection (GCC) Internals https://gcc.gnu.org/onlinedocs/gccint/

Preprocessor:
[3] The C Preprocessor https://gcc.gnu.org/onlinedocs/cpp/

Compilation:
[4] AST representation in GCC http://icps.u-strasbg.fr/~pop/gcc-ast.html

[5] GENERIC and GIMPLE: A New Tree Representation for Entire Functions
https://ols.fedoraproject.org/GCC/Reprints-2003/jason.pdf

[6] GCC Translation Sequence and Gimple IR
https://www.cse.iitb.ac.in/~uday/courses/cs715-09/gcc-gimple.pdf

[7] The Conceptual Structure of GCC
http://www.cse.iitb.ac.in/grc/intdocs/gcc-conceptual-structure.pdf

[8] Tree SSA - A New Optimization Infrastructure for GCC ftp://gcc.gnu.org/pub/gcc/summit/2003/

Tree%20SSA%20-%20A%20New%20optimization%20infrastructure.pdf

[9] Introduction to Compilers - Lecture 24: Control Flow Graphs
https://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec24.pdf

[10] New C Parser https://gcc.gnu.org/wiki/New_C_Parser

Davis Claiborne Compiligng C Code 14 / 14

https://www.calleerlandsson.com/the-four-stages-of-compiling-a-c-program/
https://gcc.gnu.org/onlinedocs/gccint/
https://gcc.gnu.org/onlinedocs/cpp/
http://icps.u-strasbg.fr/~pop/gcc-ast.html
https://ols.fedoraproject.org/GCC/Reprints-2003/jason.pdf
https://www.cse.iitb.ac.in/~uday/courses/cs715-09/gcc-gimple.pdf
http://www.cse.iitb.ac.in/grc/intdocs/gcc-conceptual-structure.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2003/Tree%20SSA%20-%20A%20New%20optimization%20infrastructure.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2003/Tree%20SSA%20-%20A%20New%20optimization%20infrastructure.pdf
https://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec24.pdf
https://gcc.gnu.org/wiki/New_C_Parser

	Overview
	Justification
	Compilation flow

	Preprocessing
	Overview
	Initial processing
	Tokenization
	The preprocessing language

	Compilation
	Overview
	AST
	IR / optimization

