
The Vim Talk
Tips from a Vim Addict

Davis Claiborne

LUG @ NC State

February 6, 2020

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

What is Vim?

• Modal, configurable, terminal-based text editor

• Open source charityware

Davis Claiborne The Vim Talk 1 / 34

What is Vim?

• Modal, configurable, terminal-based text editor

• Open source charityware

20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

What is Vim?

• Brief introduction for those who don’t already know Vim

• Vim is a modal, configurable, terminal-based text editor

• That’s a lot of jargon, so let’s define what some of those mean. I’ll
talk more in-depth about what these mean later, but for now I’ll at
least give a general overview, and I can talk more about the pros
and cons of each later

• Vim is a modal text editor. This essentially means that Vim has
several different modes that you can use it in

• Vim is also highly configurable. Many aspects of Vim’s use can be
modified through plugins or changing settings files

• Finally, Vim is terminal-based. This means that it doesn’t require a
fully-fledged graphical environment to use.

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

What is Vim?

• Modal, configurable, terminal-based text editor

• Open source charityware

Davis Claiborne The Vim Talk 1 / 34

What is Vim?

• Modal, configurable, terminal-based text editor

• Open source charityware

20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

What is Vim?

• Vim is open source charityware. This means that the code is freely
available online, and users are encouraged to make donations to
ICCF Holland to help “poor children in Uganda”

• The revenue from ads and merchandise sales (such as t-shirts,
stickers, etc.) also go to help support this organization

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based

Davis Claiborne The Vim Talk 2 / 34

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based

20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

Why Vim?

• There are many reasons that could be given for why to use Vim

• One of the most appealing aspects of Vim is that it is
keyboard-centric, which allows you to edit text more efficiently
(once you learn how to)

• Think about it like this: whenever you’re copying or pasting text, do
you go to your mouse, right click, and then select “Copy” or “Paste”
from the context menu? Or do you use Control C and Control P?

• What about when you’re browsing the web? Do you use your mouse
to open a new tab, or do you press Control T? In general, think
about how much faster you can work when you know basic keyboard
shortcuts

• Vim takes this thought process to the extreme - it essentially asks,
“Why use your mouse at all?”

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based

Davis Claiborne The Vim Talk 2 / 34

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based

20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

Why Vim?

• Vim also has a large user-base

• This means that, for most use-cases, whatever plugin you want has
(more than likely) already been developed

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based

Davis Claiborne The Vim Talk 2 / 34

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based

20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

Why Vim?

• Because Vim is popular, that also means that Vim is commonly
available by default on most systems

• This means that whenever you’re working on a system that isn’t
yours, odds are pretty good that you’ll be able to copy over your
configuration files and feel right at home

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based

Davis Claiborne The Vim Talk 2 / 34

Why Vim?

• Keyboard-centric → Work faster

• Large user-base

• Common

• Terminal-based20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

Why Vim?

• Vim is also terminal based

• This is one of the benefits that I didn’t really get when I first started
using Vim - what’s the benefit of not having a great user-interface?

• One benefit is that it’s lighter on resources - while fancy
Electron-based editors look great, they also hog all of your RAM!

– A terminal application can of course hog up your RAM - it’s
not a magic solution - but in general, terminal applications use
less RAM

• Another benefit is that you can use Vim when you’re remotely
accessing a computer (for instance, when you SSH in), meaning you
don’t have to move the file back and forth to use the editor that
you’re used to

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Why not Vim?

Figure 1: Vim is hard to learn
Davis Claiborne The Vim Talk 3 / 34

Why not Vim?

Figure 1: Vim is hard to learn

20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

Why not Vim?

• Now, let’s look at why not to learn Vim

• The main reason most people never delve too much into Vim is
because of how much work it initially takes to learn it

• From this highly accurate and scientific graph shown here, we can
see that vi (the older, somewhat simpler version of Vim) starts off
incredibly hard and stays hard

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Why not Vim?

• Hard to learn

• No built-in niceties

Davis Claiborne The Vim Talk 3 / 34

Why not Vim?

• Hard to learn

• No built-in niceties

20
20

-0
2-

06
The Vim Talk

Introduction
About Vim

Why not Vim?

• Jokes aside, it actually is pretty difficult to learn Vim - it takes a
serious amount of time to entirely relearn how to use a text editor

• Another drawback to many about Vim is how bare it is out of the
box - I’ve heard many people bemoan the lack of integreated git
tools and debuggers

• My response to that is always that, while they would be nice to
have built-in by default, there are plugins that exist that work well

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Vim is Modal

• Insert mode

• Normal mode

• Replace mode

• Visual mode

• Visual block mode

• Command mode

Davis Claiborne The Vim Talk 4 / 34

Vim is Modal

• Insert mode

• Normal mode

• Replace mode

• Visual mode

• Visual block mode

• Command mode

20
20

-0
2-

06
The Vim Talk

Introduction
Basic Concepts

Vim is Modal

• The most important thing to understand about Vim is that it is a a
modal text editor

• What does that mean? Basically, there are different modes of
operation that Vim can be in.

• The two main modes are insert mode and normal mode
• In insert mode, Vim behaves like you’d expect a normal text editor

to - you type text and it shows up on screen
• Normal mode is where things start to get different - in normal

mode, keys don’t type letters
• Instead, keys do different things - some move the cursor around,

some delete characters, and some change Vim to another mode
• While counter-intuitive at first, once you learn to embrace the

different modes of Vim and what they allow you to do, you can
work much more efficiently

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Vim is Modal

• Insert mode

• Normal mode

• Replace mode

• Visual mode

• Visual block mode

• Command mode

Davis Claiborne The Vim Talk 4 / 34

Vim is Modal

• Insert mode

• Normal mode

• Replace mode

• Visual mode

• Visual block mode

• Command mode

20
20

-0
2-

06
The Vim Talk

Introduction
Basic Concepts

Vim is Modal

• Vim has many other modes as well, which, though less well-known
than normal and insert mode, are also both very useful

• I’ll talk about them each more in-depth later, but here’s a basic
run-down:

• Replace mode is for replacing text

• Visual mode is for selecting text

• Visual block mode is like visual mode, but for columns of text
instead of lines of text

• Command mode is for inputting Vim commands

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Key behaviors in normal mode

Types of normal mode actions:

• Motion
• Command
• Operator
• Extra

Davis Claiborne The Vim Talk 5 / 34

Key behaviors in normal mode

Types of normal mode actions:

• Motion
• Command
• Operator
• Extra20

20
-0

2-
06

The Vim Talk
Introduction

Basic Concepts
Key behaviors in normal mode

• There are four main types of normal mode actions: motions,
commands, operators, and extras

• Motion actions move the cursor around the screen. Typical motion
keys are h, j, k, and l.

• Commands do something - normally they either change modes or
modify the text. Common commands are i or escape.

• Operators require a motion to be given after them, and operate on
the text between the cursor and the motion. Examples of operators
include d and c.

• Extra keys that act as prefixes to more complex combinations.
Examples of extra keys include g and z.

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Practicing / learning

• Vim tutor [3]

• Online tutorials

• Vim User Manual [2]

• Vim Reference Manual [1]

Davis Claiborne The Vim Talk 6 / 34

Practicing / learning

• Vim tutor [3]

• Online tutorials

• Vim User Manual [2]

• Vim Reference Manual [1]

20
20

-0
2-

06
The Vim Talk

Introduction
Learning More

Practicing / learning

• Though Vim has a very high learning curve, luckily there are many
references and tools available to help you learn

• One of the most valuable and underused tools, in my opinion, is one
of the tools that comes bundled with Vim - vimtutor.

• It’s an interactive tutorial that takes about a half hour to complete
that teaches people the basics of Vim

• See :help vimtutor for more

• There are also many other ways to learn - books, interactive
tutorials available online, and even some games that use Vim-like
movement to help teach you the basics. No matter how you learn,
there’s (probably) a way that works for you

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Practicing / learning

• Vim tutor [3]

• Online tutorials

• Vim User Manual [2]

• Vim Reference Manual [1]

Davis Claiborne The Vim Talk 6 / 34

Practicing / learning

• Vim tutor [3]

• Online tutorials

• Vim User Manual [2]

• Vim Reference Manual [1]20
20

-0
2-

06
The Vim Talk

Introduction
Learning More

Practicing / learning

• Finally, there’s two pieces of documentation built in to Vim itself -
the Vim User Manual and the Reference manual

• The reference manual is what you’d think - good for referencing,
but poor for learning. That’s where the user manual comes in - this
is intended to be used as a guide to more advanced information and
techniques

• You can find it by typing :help usr

• Knowing how to properly use the Vim reference manual is invaluable
to figuring out your problems quickly - see :help help-summary

for more

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Simple cheat sheet

Figure 1: Simple Vim cheat sheet [4]
Davis Claiborne The Vim Talk 7 / 34

Simple cheat sheet

Figure 1: Simple Vim cheat sheet [4]

20
20

-0
2-

06
The Vim Talk

Introduction
Learning More

Simple cheat sheet

• Cheat sheets can be useful references, especially while you’re
learning but even after you consider yourself proficient

• The website that I got this cheat sheet from also features a series of
useful tutorials that I recommend following - slowly incorporate the
basic motions they teach until you’re comfortable with them, then
move to the next page

Introduction
Important Concepts

Advanced Applications
Plugins

About Vim
Basic Concepts
Learning More

Advanced cheat sheet

Figure 2: Advanced Vim cheat sheet [6]
Davis Claiborne The Vim Talk 8 / 34

Advanced cheat sheet

Figure 2: Advanced Vim cheat sheet [6]

20
20

-0
2-

06
The Vim Talk

Introduction
Learning More

Advanced cheat sheet

• While this cheat sheet looks overwhelming, and does have lots of
useful commands, it doesn’t even come close to scratching the
surface of all of Vim’s features

• I seriously recommend at least skimming over the usr

documentation - it’s chock full of good, useful tips laid out in a very
readable (for documentation) format [2]

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Viewing files

• Buffer

• File in memory

• Window

• View of buffer

• Tab

• Collection of windows

See :help window

Davis Claiborne The Vim Talk 9 / 34

Viewing files

• Buffer

• File in memory

• Window

• View of buffer

• Tab

• Collection of windows

See :help window

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Viewing files

• I’ll start off talking about important concepts with one of Vim’s
most important concepts for advanced use - learning to distinguish
between buffers, windows, and tabs

• Though they can be confusing at first, understanding how they work
will open up whole new capabilities in your Vim usage

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Viewing files

• Buffer
• File in memory

• Window
• View of buffer

• Tab
• Collection of windows

See :help window

Davis Claiborne The Vim Talk 9 / 34

Viewing files

• Buffer
• File in memory

• Window
• View of buffer

• Tab
• Collection of windows

See :help window

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Viewing files

• Here’s a basic explanation of each of them:

• Buffers just represent the fact that a file is being stored in memory

• Windows are views of a buffer

• Tabs are collections of windows and how they are laid out

• It’s important to understand that all of these are separate from each
other - multiple windows can view the same buffer. Tabs can have
as many or as few windows as you want.

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Illustration

Figure 3: Visualization of buffers, tabs, and windows
Davis Claiborne The Vim Talk 10 / 34

Illustration

Figure 3: Visualization of buffers, tabs, and windows

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Illustration

• He’s an image that may help illustrate the differences between the
three

• The three code blocks in the top row are the three buffers that are
currently active

• The red and blue boxes in the top row show where the windows are
viewing the buffers. Note that a single buffer can have multiple
windows viewing it.

• The bottom row shows how the windows are combined into tabs -
the color around the code corresponds to the windows in the top row

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Buffers

• Buffer states:
• Active
• Hidden
• Inactive

• Navigating buffers:
• :buffers

• :bnext

• :buff <name>

See :help :buffers and :help buffer-hidden for more

Davis Claiborne The Vim Talk 11 / 34

Buffers

• Buffer states:
• Active
• Hidden
• Inactive

• Navigating buffers:
• :buffers

• :bnext

• :buff <name>

See :help :buffers and :help buffer-hidden for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Buffers

• In my opinion, buffers are the hardest of the three to grasp, since
you can’t necessarily see them all the time

• The first thing to understand about buffers is that they are just a
file in memory - nothing more, nothing less. They do not need to be
visible.

• In fact, buffers are given different statues based on their visibility:

• Buffers that are currently in a window are marked as active

• Buffers that are not displayed but are loaded are hidden

• Buffers that are not displayed and not loaded are inactive

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Buffers

• Buffer states:
• Active
• Hidden
• Inactive

• Navigating buffers:
• :buffers

• :bnext

• :buff <name>

See :help :buffers and :help buffer-hidden for more

Davis Claiborne The Vim Talk 11 / 34

Buffers

• Buffer states:
• Active
• Hidden
• Inactive

• Navigating buffers:
• :buffers

• :bnext

• :buff <name>

See :help :buffers and :help buffer-hidden for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Buffers

• The ability to navigate buffers quickly and easily is what makes
them so powerful

• You can use :buffers to view the current buffers list

• Using that information, you can use :bnext and :bprev to move
around between buffers

• Each buffer is also numbered - you can use :buff N, where N is
that buffer’s number, to move to it

• The most useful way to navigate buffers, however, is using :buff

<name>, where <name> is at least a partial match for the file you
want that is uniquely identifying

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Windows

• Creating windows:
• CTRL-W n
• CTRL-W s
• CTRL-W v

• :new

• :split

• :vsplit

• Navigating / moving windows:
• CTRL-W h, j, k, l
• CTRL-W H, J, K, L

See :help windows for more

Davis Claiborne The Vim Talk 12 / 34

Windows

• Creating windows:
• CTRL-W n
• CTRL-W s
• CTRL-W v

• :new

• :split

• :vsplit

• Navigating / moving windows:
• CTRL-W h, j, k, l
• CTRL-W H, J, K, L

See :help windows for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Windows

• In order to use windows, you have to be able to create them

• Most all Window commands are prefixed by pressing control w

• These all also have corresponding commands as well

• CTLR-W n creates a new window

• CTLR-W s splits the current window horizontally

• CTLR-W v splits the current window vertically

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Windows

• Creating windows:
• CTRL-W n
• CTRL-W s
• CTRL-W v

• :new

• :split

• :vsplit

• Navigating / moving windows:
• CTRL-W h, j, k, l
• CTRL-W H, J, K, L

See :help windows for more

Davis Claiborne The Vim Talk 12 / 34

Windows

• Creating windows:
• CTRL-W n
• CTRL-W s
• CTRL-W v

• :new

• :split

• :vsplit

• Navigating / moving windows:
• CTRL-W h, j, k, l
• CTRL-W H, J, K, L

See :help windows for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Windows

• CTRL-W followed by h, j, k, or l changes which window you’re
currently selecting in that direction

• CTRL-W followed by capital H, J, K, or L the window you’re
currently selecting as much as possible in that direction

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Tabs

• Creating / closing tabs:
• :tabnew

• :tabclose

• Navigating tabs:
• :tabs

• gt and gT

See :help tabpage for more

Davis Claiborne The Vim Talk 13 / 34

Tabs

• Creating / closing tabs:
• :tabnew

• :tabclose

• Navigating tabs:
• :tabs

• gt and gT

See :help tabpage for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Tabs

• Using tabs is pretty straightforward

• :tabnew is used to create a new tab

• :tabclose is used to close a new tab

• :tabs lists the current tabs and the windows they’re using

• gt and gT are used to navigate back and forth between tabs

• As you can see, navigation with tabs is not as fluid as with buffers
or windows, which is why they are generally recommended over tabs

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Tabs

• Creating / closing tabs:
• :tabnew

• :tabclose

• Navigating tabs:
• :tabs

• gt and gT

See :help tabpage for more

Davis Claiborne The Vim Talk 13 / 34

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Demonstration

Figure 4: Buffers, windows, and tabs

Davis Claiborne The Vim Talk 14 / 34

Demonstration

Figure 4: Buffers, windows, and tabs

20
20

-0
2-

06
The Vim Talk

Important Concepts
Windows, Tabs, and Buffers

Demonstration

• Now I’ll walk through a demonstration to hopefully explain some of
the differences between tabs and buffers

• In the image, you can see there are 6 buffers, 3 of which are
currently active

• There are 3 windows open currently

• Show navigating buffers

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Registers

• Copy / paste / cut:
• Copy: "xy<motion>

• Cut: "xd<motion>

• Paste: "xp

• Names:
• Unnamed register: ””
• Numbered registers: ”0 - ”9
• Named registers: ”a - ”z or ”A - ”Z

See :help registers for more

Davis Claiborne The Vim Talk 15 / 34

Registers

• Copy / paste / cut:
• Copy: "xy<motion>

• Cut: "xd<motion>

• Paste: "xp

• Names:
• Unnamed register: ””
• Numbered registers: ”0 - ”9
• Named registers: ”a - ”z or ”A - ”Z

See :help registers for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Registers / Macros

Registers

• Registers can be used for copying and pasting text

• Think of it as having over 40 different clipboards to copy and paste
with

• You can copy text into a register by specifying the register (here, x),
then y for yank, then the motion for capturing text

• Cutting text is similar to copying, but with commands that remove
text, like d or c

• Pasting text from a register is done with p

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Registers

• Copy / paste / cut:
• Copy: "xy<motion>

• Cut: "xd<motion>

• Paste: "xp

• Names:
• Unnamed register: ””
• Numbered registers: ”0 - ”9
• Named registers: ”a - ”z or ”A - ”Z

See :help registers for more

Davis Claiborne The Vim Talk 15 / 34

Registers

• Copy / paste / cut:
• Copy: "xy<motion>

• Cut: "xd<motion>

• Paste: "xp

• Names:
• Unnamed register: ””
• Numbered registers: ”0 - ”9
• Named registers: ”a - ”z or ”A - ”Z

See :help registers for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Registers / Macros

Registers

• There are tons of registers - some of them are more useful than
others. All registers are prefix with a double quote.

• The unnamed register is where text deleted or yanked in normal
mode go into this register

• The most recently yanked or deleted text goes to register 0, and the
text that used to be in ”0 goes to ”1 and so on

• Named registers only get text when you specify that the text should
go in there. Use a lowercase letter to replace the text that used to
be in the register, or a capital letter to append the text to the
register.

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Macros

• What is a macro?

• Creating a macro:
• Start: q<register>

• Stop: q

• Using a macro:
• Play: @<register>

• Replay: @@

• Macros use registers

See :help recording for more

Davis Claiborne The Vim Talk 16 / 34

Macros

• What is a macro?

• Creating a macro:
• Start: q<register>

• Stop: q

• Using a macro:
• Play: @<register>

• Replay: @@

• Macros use registers

See :help recording for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Registers / Macros

Macros

• Macros are used to record actions to recreate complex movements
• To create a macro, press q and then a letter
• Do whatever actions you’d like to be recorded, then press q to quit
• To play back a macro, use @ and the register used
• You can repeat the last macro by pressing @@
• Macros are actually tightly linked with registers - they’re used to

store the macro’s content
• You can view and modify a macro by putting / yanking into a reg
• Because macros use registers, and because using a capital letter for

a register appends, you can append to a macro by using a capital
letter

• This can be useful - for instance if you realize you forgot to include
part of the macro but don’t want to rerecord it

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Folds

• Hide code
• Methods:

• Indent
• Syntax
• Marker - {{{<n> and }}}<n>

• Usage:
• Create a fold: zf<motion>

• Delete a fold: zd

• Open a fold: zo

• Close a fold: zc

• Close all folds: zM

• Open all folds: zR

See :help folds for more
Davis Claiborne The Vim Talk 17 / 34

Folds

• Hide code
• Methods:

• Indent
• Syntax
• Marker - {{{<n> and }}}<n>

• Usage:
• Create a fold: zf<motion>

• Delete a fold: zd

• Open a fold: zo

• Close a fold: zc

• Close all folds: zM

• Open all folds: zR

See :help folds for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Folds

Folds

• Folds are useful tools used for hiding sections of code that you don’t
always want to see

• There are many ways of defining folds - the most useful are by
indentation, methods defined by the syntax file, or manually, by
inserting curly braces

• The number, n, is not required - you can also define nested folds
with the marker method by having a number after the braces

• My preferred method is with markers, since I have more control over
where and how the folds are defined, and it allows for others to have
the same folds as you, plus you can manually set the fold level

• Using folds is easy - to create a fold, press zf, then a motion for all
the text you want to be folded

• Pressing zd when inside of a fold allows you to delete that fold, and
so on

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Commands

• Types of commands:
• Ex commands: :

• Search patterns: / and ?

• Filter commands: !

• Example commands:
• :write, :help, :quit
• /asdf

• :!cat file.txt

See :help cmdline for more

Davis Claiborne The Vim Talk 18 / 34

Commands

• Types of commands:
• Ex commands: :

• Search patterns: / and ?

• Filter commands: !

• Example commands:
• :write, :help, :quit
• /asdf

• :!cat file.txt

See :help cmdline for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Commands and Ranges

Commands

• There are three main types of commands

• “Ex” commands, which are prefixed with colon, search commands,
which are prefixed with slash or question mark, and filter
commands, which are prefixed with an exclamation point

• Most of use are familiar with the most common commands, like
write, quit, help, etc.

• Most of us should also be familiar with searching - slash searches
forwards and question mark searches backwards

• An interesting little tidbit is that slash has come to mean search in
many areas - on Twitter and GitHub, for instance, pressing slash
brings you to the search bar

• Finally, there are filters. Filters allow you to run external commands
from the command line to alter your file.

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Command navigation

• History

• Seperated for types

• Partial matches

Davis Claiborne The Vim Talk 19 / 34

Command navigation

• History

• Seperated for types

• Partial matches

20
20

-0
2-

06
The Vim Talk

Important Concepts
Commands and Ranges

Command navigation

• You can use the up/down arrow keys to go through the command
history

• Vim keeps a separate history for all of the different kinds of
commands - this means searching for something doesn’t interfere
with your ex commands, for instance

• If you start typing something in the command window and then
press up or down, only partial matches from your history will be
shown

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Ranges

• Ranges specify section of buffer for commands
• n,m:command

• Specifying ranges:
• Line numbers: numbers
• Current line: .

• Last line: $

• Entire file: %

• E.g. :%sort to alphabetize entire file

See :help [range] for more

Davis Claiborne The Vim Talk 20 / 34

Ranges

• Ranges specify section of buffer for commands
• n,m:command

• Specifying ranges:
• Line numbers: numbers
• Current line: .

• Last line: $

• Entire file: %

• E.g. :%sort to alphabetize entire file

See :help [range] for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Commands and Ranges

Ranges

• Ranges prefix a command, and are used to specify a region of the
current buffer for the command to operate on

• There are many ways to specify ranges

• The simples is by using the line numbers you want

• You can also make the range relative to where the cursor currently
is with a period

• The dollar sign and percent sign can also be used

• For instance, you can take advantage of Vim’s sort command to
sort an entire file like so

Introduction
Important Concepts

Advanced Applications
Plugins

Windows, Tabs, and Buffers
Registers / Macros
Folds
Commands and Ranges
Text Objects

Text objects

• Used for selecting text

• Objects:
• Word: w

• Parenthesis: (or)
• Quotes: "

• HTML/XML tags: t

• Selections:
• “A(n) <object>” : a<object>
• “Inner <object>” : i<object>

See :help text-objects for more

Davis Claiborne The Vim Talk 21 / 34

Text objects

• Used for selecting text

• Objects:
• Word: w

• Parenthesis: (or)
• Quotes: "

• HTML/XML tags: t

• Selections:
• “A(n) <object>” : a<object>
• “Inner <object>” : i<object>

See :help text-objects for more

20
20

-0
2-

06
The Vim Talk

Important Concepts
Text Objects

Text objects

• Most of us are likely familiar with text motions - w, W, e, etc. -
they are used for navigating through text

• Text objects are similar to motions, but for selecting text instead

• There are several different objects you can use - w for words, double
quotes for quotes, etc.

• One of the coolest is t for HTML tags

• You can select these objects with “a” for a/an, or “i” for inner

• The difference between these two being “a” includes surrounding
white space while “i” does not

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Moving your cursor / view

• Move current line:
• To top of window: zt

• To middle of window: zz

• To bottom of window: zb

• Up one line: CTRL-E

• Down one line: CTRL-Y

• Move cursor to:
• Top of window: H

• Middle of window: M

• Bottom of window: L

See :help scroll-cursor for more

Davis Claiborne The Vim Talk 22 / 34

Moving your cursor / view

• Move current line:
• To top of window: zt

• To middle of window: zz

• To bottom of window: zb

• Up one line: CTRL-E

• Down one line: CTRL-Y

• Move cursor to:
• Top of window: H

• Middle of window: M

• Bottom of window: L

See :help scroll-cursor for more

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Buffers / Windows / Tabs

Moving your cursor / view

• Being able to quickly navigate with your cursor is another valuable
skill to know

• zt, zz, and zb can be used to reposition the current line you’re
viewing within the window, as can CTRL-E and CTRL-Y

• Note that you should be careful with zz! If you’re holding down
shift or have cap lock on, ZZ saves and closes the file!

• Additionally, you can move the cursor relative to the Window using
H, M, and L

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Opening Files

• Opening files:
• In current window: gf

• In new window: CTRL-W f

• In new tab: CTRL-W gf

• At specific line: <motion>F

• Opening tabs: :tab <command>

• :tab help gf

• :0tabnew file.txt, :$tabnew file.txt

• :+tabnew file.txt, :$-tabnew file.txt

Davis Claiborne The Vim Talk 23 / 34

Opening Files

• Opening files:
• In current window: gf

• In new window: CTRL-W f

• In new tab: CTRL-W gf

• At specific line: <motion>F

• Opening tabs: :tab <command>

• :tab help gf

• :0tabnew file.txt, :$tabnew file.txt

• :+tabnew file.txt, :$-tabnew file.txt

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Buffers / Windows / Tabs

Opening Files

• If you’re lazy like me, you prefer to avoid typing as much as possible
- that includes file names

• To open the file in the current window, you can use gf. You can
think of gf as being short for ”goto file”

• For each of these motions, you can also use a capital f, which
generally works the same as lowercase f, but if a number follows the
file, the file will be opened at that line

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Opening Files

• Opening files:
• In current window: gf

• In new window: CTRL-W f

• In new tab: CTRL-W gf

• At specific line: <motion>F

• Opening tabs: :tab <command>

• :tab help gf

• :0tabnew file.txt, :$tabnew file.txt

• :+tabnew file.txt, :$-tabnew file.txt

Davis Claiborne The Vim Talk 23 / 34

Opening Files

• Opening files:
• In current window: gf

• In new window: CTRL-W f

• In new tab: CTRL-W gf

• At specific line: <motion>F

• Opening tabs: :tab <command>

• :tab help gf

• :0tabnew file.txt, :$tabnew file.txt

• :+tabnew file.txt, :$-tabnew file.txt20
20

-0
2-

06
The Vim Talk

Advanced Applications
Buffers / Windows / Tabs

Opening Files

• Another useful tool is the tab command, which can be combined
with any command that would normally open a new window to offer
more flexibility

• For instance, running tab help gf opens the help file for gf in a new
tab

• You can also use numbers and symbols to specify where your tab
should go

• A number will make it that number tab, while a dollar sign will
make it the last tab

• Pluses and minuses can be used to make the tab relative - if no
number or symbol is given, the tab will be relative to the current tab

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Marks

• Help with file naviagtion

• Set a mark: m<letter>
• Local: lower
• Global: capital

• Going to a mark:
• Line of mark: '<symbol>

• Location of mark: `<symbol>

See :help mark-motions for more

Davis Claiborne The Vim Talk 24 / 34

Marks

• Help with file naviagtion

• Set a mark: m<letter>
• Local: lower
• Global: capital

• Going to a mark:
• Line of mark: '<symbol>

• Location of mark: `<symbol>

See :help mark-motions for more

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Marks

Marks

• Marks are useful tools that help with file navigation

• They can be made by pressing m, and then the letter you’d like to
name the mark

• If you use a lowercase letter, the mark is local to the current buffer
and can only be accessed while working in that buffer

• If you use an uppercase letter, the mark is global and can be
accessed from any file, even if the buffer is not open

• You can go back to a mark that’s been set by using either single
quote or backtick

• Single quote moves you to the line of the mark, while backtick
moves you to the exact location where the mark was made

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Ranges

• Expanding: .+1,$-5<command>

• Searches: ?back?,/forth/<command>

• Marks: 'a,'b<command>

• , vs ;:
• ; moves the cursor
• , does not

See :help range and :help 10.3 for more

Davis Claiborne The Vim Talk 25 / 34

Ranges

• Expanding: .+1,$-5<command>

• Searches: ?back?,/forth/<command>

• Marks: 'a,'b<command>

• , vs ;:
• ; moves the cursor
• , does not

See :help range and :help 10.3 for more

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Ranges

• While you saw earlier that ranges can be based on lines and files,
ranges can also do so much more

• For instance, you use numbers to expand the search range

• You can also use searches and even marks to define ranges

• There is one other aspect that I haven’t mentioned yet. While all of
my examples have used commas as the range seperators, you can
also use semicolons.

• The difference between these two is easier to understand with a
visual, but basically comma moves the cursor and semicolon doesn’t.

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?,/end/p

Davis Claiborne The Vim Talk 26 / 34

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?,/end/p

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Range example

• So let’s do an example to explain the difference between the two
with an extremely contrived example

• Imagine your cursor is currently on the line with the arrow and
you’re performing the following command, which prints the lines
that fall within the range between a line starting with the word
“function” and the word “end”

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?,/end/p

Davis Claiborne The Vim Talk 26 / 34

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?,/end/p

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Range example

• If you perform that function, the indicated lines will be printed

• That’s because the pattern looks for function at the start of a line
before the cursor, then the “end” after the cursor

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?;/end/p

Davis Claiborne The Vim Talk 26 / 34

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?;/end/p

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Range example

• Now let’s return back to the original scenario, but this time using a
semicolon instead of a comma

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?;/end/p

Davis Claiborne The Vim Talk 26 / 34

Range example

function counter(i)

local a = 0

do

a = a + i

end

return function()

a = a + 1

return a

end

end

:?^function?;/end/p

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Range example

• This time, these lines will be printed

• In contrast to the comma, this time the first occurrence of end after
the pattern match is found

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Inputting commands

• Matching:
• Show matches: CTRL-D

• Cycle through options: <tab> and <S-tab>

• Command window: q:, q/
• Normal mode navigation / editing
• Run commands in insert mode

See :help cmdline-completion and :help

cmdline-window for more

Davis Claiborne The Vim Talk 27 / 34

Inputting commands

• Matching:
• Show matches: CTRL-D

• Cycle through options: <tab> and <S-tab>

• Command window: q:, q/
• Normal mode navigation / editing
• Run commands in insert mode

See :help cmdline-completion and :help

cmdline-window for more20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Inputting commands

• As you’re typing in the command window, some formats, like ex
commands, have matching options available

• You can show all the available matches by pressing CTRL-D

• You can press tab or shift tab to autocomplete forwards or
backwards

• Repeated tabs continue to cycle through the available options

• You can open a command window to see previous ex commands or
searches by using q: or q/

• The command window shows the entire history of commands
entered, and can be searched though / operated on like normal text

• To run the command or start the search, press enter on the line or
go into insert mode on the desired line and hit enter

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Searching

• Replace using last search: :<range>s//<replace>

• Replace using last search: :<range>s/<p>/<r>/<flag>
• Confirm: c

• Global: g

• Ignore case: i

• Useful patterns:
• Word boundary: \< and \>

• Matching: \(\) and \1, \2, ...

See :help :substitute and :help pattern-atoms for more

Davis Claiborne The Vim Talk 28 / 34

Searching

• Replace using last search: :<range>s//<replace>

• Replace using last search: :<range>s/<p>/<r>/<flag>
• Confirm: c

• Global: g

• Ignore case: i

• Useful patterns:
• Word boundary: \< and \>

• Matching: \(\) and \1, \2, ...

See :help :substitute and :help pattern-atoms for more

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Searching

• Searching has tons of parts to it. This slide has a few tips to
searching that I found very helpful

• The first one is using the last search to perform a replacement

• When no search pattern is given, the last search is used instead

• This lets you test out a search first to see what it matches before
performing the replacement

• The substitute command also takes flags - some of the more useful
ones are “c”, which prompts for confirmation for each change,
global, which does all substitutions in the range, and i, which
ignores the case

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Searching

• Replace using last search: :<range>s//<replace>

• Replace using last search: :<range>s/<p>/<r>/<flag>
• Confirm: c

• Global: g

• Ignore case: i

• Useful patterns:
• Word boundary: \< and \>

• Matching: \(\) and \1, \2, ...

See :help :substitute and :help pattern-atoms for more

Davis Claiborne The Vim Talk 28 / 34

Searching

• Replace using last search: :<range>s//<replace>

• Replace using last search: :<range>s/<p>/<r>/<flag>
• Confirm: c

• Global: g

• Ignore case: i

• Useful patterns:
• Word boundary: \< and \>

• Matching: \(\) and \1, \2, ...

See :help :substitute and :help pattern-atoms for more

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Searching

• Patterns can get very complex - I certainly wouldn’t call myself an
expert on them by any means

• These patterns are pretty simple, though, can can be very helpful

• The first two are first starting and stopping word boundaries

• Word boundaries are pretty much what they sound like - they come
at the start and end of words and are useful for keeping partial
matches from messing up your search

• Matching is also very useful - a back slash followed by (or)
indicates what’s called a “grouping,” which can then be referred to
in the replacement pattern by its number

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Useful / interesting commands

• Man pages in Vim:
• Open man page under cursor: K
• Open man in Vim:

• :runtime! ftplugin/man.vim

• <leader>K or :Man xxx

• File to HTML: :TOhtml

• View / change options: :options

• Special characters:
• Current file: %
• E.g. :cd %:h

See :help Man, :help cmdline-special, and :help

filename-modifiers for more

Davis Claiborne The Vim Talk 29 / 34

Useful / interesting commands

• Man pages in Vim:
• Open man page under cursor: K
• Open man in Vim:

• :runtime! ftplugin/man.vim

• <leader>K or :Man xxx

• File to HTML: :TOhtml

• View / change options: :options

• Special characters:
• Current file: %
• E.g. :cd %:h

See :help Man, :help cmdline-special, and :help

filename-modifiers for more

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Useful / interesting commands

• This slide just has various things that I didn’t think fit anywhere
else really well, but were still cool / useful

• Vim has the ability to view man pages - capital K will open the man
page of the word under the cursor in the terminal

• But you can also view the man pages within Vim

• First, run the following command (or add it to your .vimrc if you
use it enough)

• Now you can use “leader K”, or use the :Man command, to open
the man page within Vim

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Useful / interesting commands

• Man pages in Vim:
• Open man page under cursor: K
• Open man in Vim:

• :runtime! ftplugin/man.vim

• <leader>K or :Man xxx

• File to HTML: :TOhtml

• View / change options: :options

• Special characters:
• Current file: %
• E.g. :cd %:h

See :help Man, :help cmdline-special, and :help

filename-modifiers for more
Davis Claiborne The Vim Talk 29 / 34

Useful / interesting commands

• Man pages in Vim:
• Open man page under cursor: K
• Open man in Vim:

• :runtime! ftplugin/man.vim

• <leader>K or :Man xxx

• File to HTML: :TOhtml

• View / change options: :options

• Special characters:
• Current file: %
• E.g. :cd %:h

See :help Man, :help cmdline-special, and :help

filename-modifiers for more

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Ranges / Commands / Searching

Useful / interesting commands

• Using the :options command, you can view and even change
specific variables

• There are certain special characters that are replaced in the
command line - the most important of which is percent, which
represents the current buffer

• In combination with filename modifiers, you can easily do things like
change Vim’s current directory to be relative to the current buffer’s
directory

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Normal mode

• Increment / decrement: CTRL-A and CTRL-X

• Binary, octal, decimal, hex, alpha
• See :help nrformats for more

• Suspend Vim:
• Command line: CTRL-Z1

• Resume Vim: fg

1 As of Vim 8, :terminal can be used to bring up a terminal in a new window
Davis Claiborne The Vim Talk 30 / 34

Normal mode

• Increment / decrement: CTRL-A and CTRL-X

• Binary, octal, decimal, hex, alpha
• See :help nrformats for more

• Suspend Vim:
• Command line: CTRL-Z1

• Resume Vim: fg

1 As of Vim 8, :terminal can be used to bring up a terminal in a new window

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Useful bindings

Normal mode

• Like the last slide, these are more useful things that don’t quite fit
anywhere else

• The first one is to increment with CTRL-A and decrement w/
CTRL-X

• This may seem like it’s not very useful at first, but, combined with
macros, you can use this command easily to make a list

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Normal mode

• Increment / decrement: CTRL-A and CTRL-X

• Binary, octal, decimal, hex, alpha
• See :help nrformats for more

• Suspend Vim:
• Command line: CTRL-Z1

• Resume Vim: fg

1 As of Vim 8, :terminal can be used to bring up a terminal in a new window
Davis Claiborne The Vim Talk 30 / 34

Normal mode

• Increment / decrement: CTRL-A and CTRL-X

• Binary, octal, decimal, hex, alpha
• See :help nrformats for more

• Suspend Vim:
• Command line: CTRL-Z1

• Resume Vim: fg

1 As of Vim 8, :terminal can be used to bring up a terminal in a new window

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Useful bindings

Normal mode

• You can also suspend Vim with CTRL-Z
• This pauses your Vim session and brings you to the terminal that you

used to open Vim
• Again, at first this might not seem so useful, but there are certain

scenarios where this is valuable
• For instance, when using a remote connection or dumb terminal you can

quickly run something on the command line without ending your session
• Even in graphical environments, this command can be useful - since it

uses the same terminal that Vim was launched in, variables set in that
session still exist

• When you’re done using the command line, run the command fg to
resume Vim

• As of Vim 8, the terminal command has somewhat made this obsolete

Introduction
Important Concepts

Advanced Applications
Plugins

Buffers / Windows / Tabs
Marks
Ranges / Commands / Searching
Useful bindings

Insert mode

• Autocomplete: CTRL-X, CTRL-N and CTRL-P to cycle
• File names: CTRL-F

• Tags: CTRL-O

• Keywords: CTRL-N

• Spelling: s2

• Registers:
• Paste: CTRL-R <reg>

See :help i_CTRL-X and :help compl-omni-filetypes for
more

2 CTRL-S will suspend the terminal; use CTRL-Q to resume
Davis Claiborne The Vim Talk 31 / 34

Insert mode

• Autocomplete: CTRL-X, CTRL-N and CTRL-P to cycle
• File names: CTRL-F

• Tags: CTRL-O

• Keywords: CTRL-N

• Spelling: s2

• Registers:
• Paste: CTRL-R <reg>

See :help i_CTRL-X and :help compl-omni-filetypes for
more

2 CTRL-S will suspend the terminal; use CTRL-Q to resume

20
20

-0
2-

06
The Vim Talk

Advanced Applications
Useful bindings

Insert mode

• In insert mode, CTRL-X is used to bring up different autocomplete
menus - CTRL-F for files, CTRL-O omni completing from tags files
like exuberant ctags, etc.

• Note that for spelling, you press just s and not control s, since
control s suspends Vim. If you happen to do this, press control q to
resume it

• You can also insert text from registers while in insert mode by
pressing CTRL-R then pressing the register

Introduction
Important Concepts

Advanced Applications
Plugins

Undo tree
Marks
Window Movement

Undotree

• Built-in undo tree

• Plugin to visualize

Figure 5: Undotree in action [5]

See :help undo-tree and :help undotree.txt

Davis Claiborne The Vim Talk 32 / 34

Undotree

• Built-in undo tree

• Plugin to visualize

Figure 5: Undotree in action [5]

See :help undo-tree and :help undotree.txt

20
20

-0
2-

06
The Vim Talk

Plugins
Undo tree

Undotree

• I’ll say this first before I start getting in to plugins - as a general
rule, I try to avoid using lots of plugins unless I think they’re very
valuable

• I try to keep the number of plugins I use low so that I can easily get
Vim set up and started without too much hassle

• Obviously plugins are awesome and part of what makes Vim so
useful - and certain plugins probably would speed up my
development process

• That being said, these are the only plugins I use for now, mostly
because I haven’t spent a ton of time researching plugins - so if you
have any suggestions, feel free to let me know!

Introduction
Important Concepts

Advanced Applications
Plugins

Undo tree
Marks
Window Movement

Undotree

• Built-in undo tree

• Plugin to visualize

Figure 5: Undotree in action [5]

See :help undo-tree and :help undotree.txt

Davis Claiborne The Vim Talk 32 / 34

Undotree

• Built-in undo tree

• Plugin to visualize

Figure 5: Undotree in action [5]

See :help undo-tree and :help undotree.txt

20
20

-0
2-

06
The Vim Talk

Plugins
Undo tree

Undotree

• Have you ever been editing, decided you needed to undo to some
point to look at a change you made, then accidentally made a new
change, deleting all your progress?

• Thanks to Vim’s built-in undo tree, you never have to worry about
doing that again - Vim stores your undoes in a tree structure, so
new changes just make new branches, keeping you from accidentally
wiping your redo history

• This plugin helps you visualize the undo tree graphically

Introduction
Important Concepts

Advanced Applications
Plugins

Undo tree
Marks
Window Movement

Signature

Figure 6: Example of local and global mark visualization [7]

Davis Claiborne The Vim Talk 33 / 34

Signature

Figure 6: Example of local and global mark visualization [7]

20
20

-0
2-

06
The Vim Talk

Plugins
Marks

Signature

• Here is an illustration of the different marks using

• As you can see in the picture, there are three global marks set, as
well as several local marks

• I have run into some issues with this plugin, however. If you delete a
global mark using the delmarks command, the gutter won’t update
correctly. To fix this, reload the buffer.

• See here for more:
https://github.com/kshenoy/vim-signature/issues/162

https://github.com/kshenoy/vim-signature/issues/162

Introduction
Important Concepts

Advanced Applications
Plugins

Undo tree
Marks
Window Movement

Tradewinds

Vim tradewinds [8]
Davis Claiborne The Vim Talk 34 / 34

Tradewinds

Vim tradewinds [8]

20
20

-0
2-

06
The Vim Talk

Plugins
Window Movement

Tradewinds

• Vim’s window movement leaves a lot to be desired by default - this
plugin, tradewinds, helps to alleviate some of these issues

• You have your windows laid out like so

Introduction
Important Concepts

Advanced Applications
Plugins

Undo tree
Marks
Window Movement

Tradewinds

Vim tradewinds [8]
Davis Claiborne The Vim Talk 34 / 34

Tradewinds

Vim tradewinds [8]

20
20

-0
2-

06
The Vim Talk

Plugins
Window Movement

Tradewinds

• Now imagine you want to move one of those windows over for a bit
to the side, like so

• Once your done, how do you move it back?
• Vim’s window movements by default are all extreme - you can only

move windows all the way to the left, right, etc.
• (As a side note, you can rotate horizontally split tabs as well, but

that still doesn’t really help solve this issue)
• That’s where this plugin comes in - tradewinds allows for what it

calls “soft moves”
• Tradewinds’ key mappings are intuitive - they are prefixed by

CTRL-W g, and it implements the HJKL keys to soft move windows
in specific directions

• The fix, here, for instance, is CTRL-W gl, which moves the left
window back to where it was

References

[1] See :help help-summary

[2] See :help usr_toc

[3] See :help vimtutor

[4] Graphical vi-vim Cheat Sheet and Tutorial
http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html

[5] undotree https://github.com/mbbill/undotree

[6] Vim Cheat Sheet for Programmers
http://michael.peopleofhonoronly.com/vim/vim_cheat_sheet_for_programmers_print.pdf

[7] vim signature https://github.com/kshenoy/vim-signature

[8] vim trade winds https://github.com/andymass/vim-tradewinds

Davis Claiborne The Vim Talk 34 / 34

http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html
https://github.com/mbbill/undotree
http://michael.peopleofhonoronly.com/vim/vim_cheat_sheet_for_programmers_print.pdf
https://github.com/kshenoy/vim-signature
https://github.com/andymass/vim-tradewinds

	Introduction
	About Vim
	Basic Concepts
	Learning More

	Important Concepts
	Windows, Tabs, and Buffers
	Registers / Macros
	Folds
	Commands and Ranges
	Text Objects

	Advanced Applications
	Buffers / Windows / Tabs
	Marks
	Ranges / Commands / Searching
	Useful bindings

	Plugins
	Undo tree
	Marks
	Window Movement

