
HooYa! Network:
Proposal for a Distributed Booru-like P2P
Image-addressable Network

Wesley Coakley
w@wesleycoakley.com

Linux User Group at N.C. State

Feb. 27 2020

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 1 40



Outline

Overview
What is a Booru?
Goals of Boorus
Problems

HooYa! Introduction
What is HooYa?
Query Routing
Tag-root (R0) Lookups

Kademlia
Overview
HooYa! Extensions to Vanilla Kademlia

HooYa! Typical Operation
Routing Example
Joining the Network

Extra Functionality

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 2 40



Overview

Overview
What is a Booru?
Goals of Boorus
Problems

HooYa! Introduction
What is HooYa?
Query Routing
Tag-root (R0) Lookups

Kademlia
Overview
HooYa! Extensions to Vanilla Kademlia

HooYa! Typical Operation
Routing Example
Joining the Network

Extra Functionality

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 3 40



What is a Booru?

Boorus are imageboard communities; they revolve around the collection,

organization, and indexing of images / drawings (
o-ekaki

お絵描き) which are
centrally shared and pruned. Many such booru communities exist, such as:
• Danbooru (NSFW)

> 3.69m+ images
> 108m+ tags
Around since May 25 2005

• Gelbooru (NSFW)

> 4.8m+ images
Around since 2007

• Konachan (NSFW)

• Derpibooru

• Safebooru

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 4 40

https://donmai.us
https://gelbooru.com
https://konachan.com
https://derpibooru.org
https://safebooru.org


Booru Community Features

Boorus are centralized communities (i.e. running on a dedicated server);
upon creating an account users may:

• Post in a community forum

• Upload images to the site

• Add tags to existing images (help organize the site)

• Flag inappropriate content

• Create and edit pages on the community wiki

Accounts on one booru (e.g. Danbooru) do not translate into accounts on
other boorus they are separate instances (with lots of the same images)

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 5 40



Boorus organize Image Information

Boorus associate a set of images with a number of tags (many to many
relationship). The following are examples of tags:

• character:ayanami rei

• canned coffee

• simple background

Tags describe what is present (visually) in an image.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 6 40



Example of a Booru Image

Figure: An example of Image Tagging

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 7 40



What are tags?

A tag t is a unique, descriptive string in the booru vocabulary V of the form:

t = Character︸ ︷︷ ︸
Namespace

: Ayanami Rei︸ ︷︷ ︸
Attributre

Notice that Namespace(t) = ∅ is perfectly valid as in the case of
t = canned coffee and t = simple background. In many booru
softwares, “:” is used as the delimeter between namespace and attribute as
above.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 8 40



Boorus organize Image Information

The association of metadata (a mapping onto some T ∈ V ) allows images
to be easily searchable and discoverable.
Much like how Google indexes webpages with metadata (allowing them to
be discovered with a simple query), boorus allow similar queries on image
metadata.

∃D : i→ V, i ∈ I
∃Q : t→ I, t ∈ V

D is used to describe an image i using the booru vocabulary V ; Q is used
to find (query) all images i described by tag t.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 9 40



Example of a booru tag

Figure: Individual tags are one-to-many relationships

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 10 40



Goals of Boorus

I assume that the primary goal of boorus is to organize and index
information about images via tags; supporting this, there are a number of
other goals of any Booru software:

Association Boorus allow users to define a set of tags associated with an
image s.t. the set describes and classifies an image

Accuracy The set of tags must be an accurate reflection of the image in
question

Consistency The method used to determine a tag’s applicability to any
given image must be the same for every other image

Community Allow users to collaboratively decide a tag’s applicability to an
image

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 11 40



Problems

There are a number of problems with the way things are:
• Redundant images across Gelbooru, Danbooru, etc. etc.
• Duplication of work constructing tag-sets for images
• Single point-of-failure (think DDoS, unpatched software)
• Censorship (as in the case of Danbooru)
• Limited bandwidth

Of course there are archives (e.g. Danbooru2019) of the data . . . but can
we build it better?

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 12 40

https://www.gwern.net/Danbooru2019


Overview

Overview
What is a Booru?
Goals of Boorus
Problems

HooYa! Introduction
What is HooYa?
Query Routing
Tag-root (R0) Lookups

Kademlia
Overview
HooYa! Extensions to Vanilla Kademlia

HooYa! Typical Operation
Routing Example
Joining the Network

Extra Functionality

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 13 40



What is HooYa?

HooYa! is a protocol describing a distributed, fault-tolerant booru
operating on top of the Internet.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 14 40



What is HooYa?

Most booru users tend to save lots of those images to their (local)
hard-drive; HooYa! exploits this trend.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 15 40



What is HooYa?

In HooYa!, images are distributed across clients on the network; every client
is a server (i.e. the HooYa!Net is P2P) which exposes its indexed files to
the rest of the network.

I : set of all images on HooYa!

V : set of all tags known to HooYa! (network vocabulary)

C : set of all clients connected to HooYa!

We must modify a core function Q : t→ I (Tag Query, t ∈ V ) to better fit
this network, however, because there is no longer a central server! The
original D : i→ V (Description of an image) will stay the same.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 16 40



Query Routing

Q : t→ C
Queries resolve to a subset of clients!

Not just a subset of images matching the query.

Figure: New Tag Query Function Q

Furthermore, we must have a client which knows who owns files tagged
with t!

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 17 40



Query Routing

Define three roles of any node c during typical operation:

Root (R0) Knows a particular value of Q(c) or D(i) for some c, i

Server (R1) Exposes some files with many different t ∈ V
Client (R2) Creates requests across the network

Any client wishing to discover files (as R2) must perform queries to nodes
of the other two capacities in-order: R0 → R1.

• Increased fault-tolerance

• Opportunity for caching along the query path!

Every client acts as R0, R1, R2 at different moments.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 18 40



Anatomy of a Query

But how does this work in practice? Consider the below example of a file
query originating from client c1 on tag t = Character:Akagi Ritsuko

1. Client c1 contacts a client c2 who is the root for Character:Akagi
Ritsuko; c2 gives c1 a list of clients c3, c4, c5 who posess such files

2. c1 queries c3, c4, and c5 directly for all files and additional metadata
matching t.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 19 40



Tag-root (R0) Lookups

Once the corresponding R0 node is contacted, transactions with nodes
acting in R1 follow iteratively and without any other information needed
. . . but how do we know where R0 nodes are? Especially when all nodes
are R0?
There are several existing methods:

• Query flooding (ask everyone!)

• Central database (what’s the point?)

• Superpeers (it’s a possibility, but . . . )

• Structured Search

HooYa! uses the last one, as it reduces network traffic while keeping lookup
times relatively fast.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 20 40



Tag-root (R0) Lookups using DHT

Distributed Hash Table (DHT) lookup is a structured lookup algorithm
for finding values from a network-wide hash table

• BitTorrent (magnet links)

• Freenet

• IPFS

• Perfect Dark

Each node has an ID (randomly generated); nodes send queries to their
neighbor(s) and their neighbor(s) forward the request until the target (in
this case an R0 node is reached. There are many implementations of DHT:
Kademlia, Pastry, CAN, Tapestry (all born in 2001)!

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 21 40



Overview

Overview
What is a Booru?
Goals of Boorus
Problems

HooYa! Introduction
What is HooYa?
Query Routing
Tag-root (R0) Lookups

Kademlia
Overview
HooYa! Extensions to Vanilla Kademlia

HooYa! Typical Operation
Routing Example
Joining the Network

Extra Functionality

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 22 40



Using Kademlia DHT for R0 lookup

Kademlia is the DHT which defines the HooYa! network; it has the
following characteristics:

• The distance between two nodes is the XOR (⊕) of the node IDs of
both

• Nodes have a list of contacts (other nodes it knows)

• This list (called a series of buckets) is used to route requests to the
correct nodes

• Routing is connection-less (i.e. UDP)

In our case, the “keys” in this DHT are tags t and the “values” are the R1

nodes indexed by the R0 node.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 23 40



More on Kademlia k-buckets

Any node c in a Kademlia network organizes contacts into a series of
k-buckets, where k is a system-wide parameter.
Any contact on a Kademlia network may be stored into a given client’s
bucket j matching:

2j ≤ distance(c, c2) < 2j+1, 0 ≤ j < k

• Contacts in a given k-bucket are sorted by last-seen time

• Buckets are updated as new contacts are discovered and old ones are
pruned

Stored information is replicated across k nodes by iteratively publishing
information to the k clients nearest the key

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 24 40



More on Kademlia k-buckets

Typical Kademlia parameters:

1. k = 20 (bucket size)

2. B = 160 (Client ID size)

3. α = 3 (parallelism parameter)

Primitive (non-iterative) Remote Procedure Calls (RPC):

PING Still-alive poll

STORE Store a block of data with the associated key locally

FIND NODE Returns k nodes closest to a given ID

FIND VALUE Returns stored data if applicable, otherwise returns a list of
k nodes closest to the key

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 25 40



HooYa! Extensions to Vanilla Kademlia

DHT is ideal for storing one-to-one data. . .

Figure: (Distributed) Hash Table lookup

But many different people can have the same file!

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 26 40



HooYa! Extensions to Vanilla Kademlia

Solution: l-buckets!

Figure: A one-to-many table

Clients are ordered by last-seen time (as in k-buckets); there is a maximum
number of indexed clients, l, in any one l-bucket

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 27 40



Overview

Overview
What is a Booru?
Goals of Boorus
Problems

HooYa! Introduction
What is HooYa?
Query Routing
Tag-root (R0) Lookups

Kademlia
Overview
HooYa! Extensions to Vanilla Kademlia

HooYa! Typical Operation
Routing Example
Joining the Network

Extra Functionality

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 28 40



Query-routing example

Assume an established network:

Figure: B = 4 Kademlia Network

Consider client 12 (4′b1100); the distance to client 0 is
4′b1100⊕ 4′b0000 = 12.
Since 23 ≤ 12 < 23+1, this node may be in k-bucket j = 3.
Similarly, the distance to client 14 (4′b1110) is 4′b1100⊕ 4′b1110 = 2, so it
may be in k-bucket j = 1 (21 ≤ 2 < 21+1).

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 29 40



Query-routing example

In big networks, nodes are not always aware of other nodes. Suppose we
need to send a request to node 0 but we do not know its IP!

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 30 40



Query-routing example

Solution: issue a FIND NODE request to a close neighbor (1); parse
responses (2) and iterate until the node is found (3).

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 31 40



Query-routing example

Value lookups are conducted in a similar way; first we should hash the
query and trim it to fit our B-size keyspace.

1. SHA1(Character:Langley Asuka) = 0xD5798B2F. . .

2. For 8-bit keyspace (as in the example) we should look at nodes close
to 0xD = 14 for entries regarding Character:Langley Asuka.

3. Route the query similar to node searches (previous example)

4. If that node didn’t exist, we would iteratively query nodes in that
j = 1 k-bucket until we find a value (data is replicated).

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 32 40



Query-routing example

Node 14 is then contacted and the l-bucket is retrieved.

Figure: An R0 response (1) and subsequent R1 requests (2)

Upon receiving an l-bucket from node 14 corresponding to the query,
node 12 is free to initiate a connection to retrieve the files and metadata
from X, Y, Z; results may be cached locally to avoid excessive querying.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 33 40



Notes on Data Duplication

When data is pushed to the DHT, it is duplicated to the k nearest nodes
on the network. This data has a TTL (time-to-live), normally 24 hours,
after which it must be republished by the owner.

Figure: PUBLISH-REPLICATE Cycle

Additionally, every stored value is “replicated” periodically (traditionally
every hour) to the nearest k nodes to its key.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 34 40



Query-routing Protocols

What protocols do HooYa! nodes use?

UDP Connectionless, User Datagram Protocol
• R0-level queries
• Iterative searches

UDT UDP-based data transfer
• R1-level file transfers

Why UDP?
• UDP Hole-punching (no port-forwarding!)
• Reduce unnecessary handshaking (connectionless)
• DHT is message-oriented, so is UDP
• Sending packets? Fire and forget!

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 35 40



Joining the Network

Clients seeking to join the network must know a client already on the
network. This is known as “bootstrapping” to the network and is
accomplished by using:

1. Previously seen clients (from previous sessions)

2. DNS TXT lookups on strap.hooya.org

3. .txt of “preferred” boostrap nodes (last resort)

4. IRC (not even a last resort)

. . . in order of preference.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 36 40



Joining the Network

Once a client node is known (using one of the methods above), insert the
bootstrapping node(s) into the appropriate k-bucket and send a request to
find its nearest neighboring nodes.

Figure: A node (black) bootstraps using a known node (pink)

Bootstrapped nodes can begin storing / querying information immediately.

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 37 40



Leaving the Network

Clients may exit the network by:

• Timeout (PING but no PONG response)

• Advertising a departure to its contacts

Figure: A node (pink) advertises a departure to another node (black)

Because information is duplicated across k-buckets, information is not
lost!

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 38 40



Overview

Overview
What is a Booru?
Goals of Boorus
Problems

HooYa! Introduction
What is HooYa?
Query Routing
Tag-root (R0) Lookups

Kademlia
Overview
HooYa! Extensions to Vanilla Kademlia

HooYa! Typical Operation
Routing Example
Joining the Network

Extra Functionality

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 39 40



Extra Functionality

• Embedded chatroom / community imageboard

PubSub? Gossip protocols?

• Synonymous tags

How do we decide? Active vote? Passive majority-rule?
And what about tag implications (Ayanami Rei ⇒ Neon Genesis

Evangelion)?

• Duplicate detection / SHA1 mismatch

Thumbnailing? Feature Detection?

• Tag Prediction via Cooperative, Convolutional Neural Networking

Wesley Coakley (LUG@NCSU) HooYa! P2P Booru Feb. 27 2020 40 40


	Overview
	What is a Booru?
	Goals of Boorus
	Problems

	HooYa! Introduction
	What is HooYa?
	Query Routing
	Tag-root (R0) Lookups

	Kademlia
	Overview
	HooYa! Extensions to Vanilla Kademlia

	HooYa! Typical Operation
	Routing Example
	Joining the Network

	Extra Functionality

